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CHAPTER 1

Installation

To install the released version, type

$ pip install wotan

which automatically installs numpy, numba and scipy if not present. Depending on the algorithm, additional depen-
dencies exist:

• huber, ramsay and hampel depend on statsmodels

• hspline and gp depend on sklearn

• pspline depends on pygam

• supersmoother depends on supersmoother

To install all additional dependencies, type $ pip install statsmodels sklearn supersmoother
pygam.

A known incompatibility exists between versions 1.3 of scipy and 0.9 of statsmodels, as the latest version of scipy
deprecated the import for factorial from scipy.misc. This should be fixed again in a future version of statsmodels.
Until then, I recommend to pip install scipy==1.2 (or conda install scipy==1.2, if you use conda.).
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CHAPTER 2

Wotan Interface

2.1 Detrending with the flatten module

Usage example:

import numpy as np
from astropy.io import fits

def load_file(filename):
"""Loads a TESS *spoc* FITS file and returns TIME, PDCSAP_FLUX"""
hdu = fits.open(filename)
time = hdu[1].data['TIME']
flux = hdu[1].data['PDCSAP_FLUX']
flux[flux == 0] = np.nan
return time, flux

print('Loading TESS data from archive.stsci.edu...')
path = 'https://archive.stsci.edu/hlsps/tess-data-alerts/'
filename = "hlsp_tess-data-alerts_tess_phot_00062483237-s01_tess_v1_lc.fits"
time, flux = load_file(path + filename)

# Use wotan to detrend
from wotan import flatten
flatten_lc1, trend_lc1 = flatten(time, flux, window_length=0.75, return_trend=True,
→˓method='mean')
flatten_lc2, trend_lc2 = flatten(time, flux, window_length=0.75, return_trend=True,
→˓method='biweight')

# Plot the result
import matplotlib.pyplot as plt
plt.scatter(time, flux, s=1, color='black')
plt.plot(time, trend_lc1, linewidth=2, color='red')
plt.plot(time, trend_lc2, linewidth=2, color='blue')
plt.xlim(min(time), 1365)

(continues on next page)
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(continued from previous page)

plt.show()

2.2 Choosing the right window size

Shorter windows (or knot distances, smaller kernels. . . ) remove stellar variability more effectively, but suffer a larger
risk of removing the desired signal (the transit) as well. What is the right window size?

For the time-windowed sliders, the window should be 2-3 times longer than the transit duration (for details, read [the
paper](www). The transit duration is

𝑇14,max = (𝑅s +𝑅p)
(︁

4𝑃
𝜋𝐺𝑀s

)︁1/3

for a central transit on a circular orbit. If you have a prior on the stellar mass and radius, and a (perhaps maximum)
planetary period, wotan offers a convenience function to calculate 𝑇14,max:

As an example, we can calculate the duration of an Earth-Sun transit:

from wotan import t14
tdur = t14(R_s=1, M_s=1, P=365, small_planet=True)
print(tdur)

This should print ~0.54 (days), or about 13 hours. To protect a transit that long, it is reasonable to choose a window
size of 3x as long, or about 1.62 days. With the biweight time-windowed slider, we would detrend with these
settings:

from wotan import t14, flatten
tdur = t14(R_s=1, M_s=1, P=365, small_planet=True)
flatten_lc = flatten(time, flux, window_length=3 * tdur)

2.3 Removing outliers before the detrending

Despite robust detrending methods, it is sometimes preferable to remove outliers. Wotan offers a sliding time-
windowed function to do this. The user can define an upper and lower threshold, in multiples of the standard deviation
or the median absolute deviation. The middle point in each window can be calculated with the mean or the median.
Outliers are replaced with NaN values.

Sliding time-windowed outlier clipper.

Parameters

• time (array-like) – Time values

• flux (array-like) – Flux values for every time point

• window_length (float) – The length of the filter window in units of time (usually days)

• low (float or int) – Lower bound factor of clipping. Default is 3.

• high (float or int) – Lower bound factor of clipping. Default is 3.

• method (mad (median absolute deviation; default) or std (standard deviation)) – Outliers more
than low and high times the mad (or the std) from the middle point are clipped

• center (median (default) or mean) – Method to determine the middle point

returns clipped (array-like) – Input array with clipped elements replaced by NaN values.
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Example:

from wotan import slide_clip
clipped_flux = slide_clip(

time,
flux,
window_length=0.5,
low=3,
high=2,
method='mad', # mad or std
center='median' # median or mean
)

2.4 Removing outliers after the detrending

With robust detrending methods, the trend line (and thus the detrended data) may be unaffected by outliers. In the
actual data, however, outliers are still present after detrending. For many purposes, it is acceptable to clip this:

from astropy.stats import sigma_clip
flux = sigma_clip(flux, sigma_upper=3, sigma_lower=20)

2.5 Masking transits during detrending

If transits have already been discovered, it is best practice to mask them while detrending. This way, the in-transit data
points can not influence the detrending.

The current version supports this feature in the cosine and lowess methods. It is implemented but experimental in
most other methods (give it a try. . . )

Example:

Example:

from wotan import transit_mask, flatten
mask = transit_mask(

time=time_array,
period=1.234,
duration=0.1,
T0=1234.123)

flatten_lc, trend_lc = flatten(
time,
flux,
method='cosine',
window_length=0.5,
return_trend=True,
robust=True,
mask=mask
)

2.4. Removing outliers after the detrending 5
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CHAPTER 3

Usage examples

As follows are usage example for all detrending methods offered by wotan. In all examples, the following synthetic
data are used:

import numpy as np
from wotan import flatten

points = 1000
time = np.linspace(0, 30, points)
flux = 1 + ((np.sin(time) + time / 10 + time**1.5 / 100) / 1000)
noise = np.random.normal(0, 0.0001, points)
flux += noise
for i in range(points):

if i % 75 == 0:
flux[i:i+5] -= 0.0004 # Add some transits
flux[i+50:i+52] += 0.0002 # and flares

flux[300:400] = np.nan

3.1 Robust estimators with tuning constant

Some robust estimators can be tuned: biweight, andrewsinewave, welsch, huber, huber_psi, hampel,
hampelfilt, tau. The hodges can not be tuned.

Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='biweight',
window_length=0.5, # The length of the filter window in units of ``time``
edge_cutoff=0.5, # length (in units of time) to be cut off each edge.
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve

(continues on next page)
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cval=5.0 # Tuning parameter for the robust estimators
)

Which we can plot as follows:

import matplotlib.pyplot as plt
plt.scatter(time, flux, s=1, color='black')
plt.plot(time, trend_lc, color='red', linewidth=2)
plt.show()

plt.close()
plt.scatter(time, flatten_lc, s=1, color='black')
plt.show()

Note: Tuning constants cval are defined as multiples in units of median absolute deviation from the central location.
Defaults are usually chosen to achieve high efficiency for Gaussian distributions. For example, for the biweight
a cval of 6 includes data up to 4 standard deviations (6 median absolute deviations) from the central location and
has an efficiency of 98%. Another typical value for the biweight is 4.685 with 95% efficiency. Larger values for
make the estimate more efficient but less robust. The default for the biweight in wotan is 5, as it has shown the best
results in the transit injection retrieval experiment. The other defaults are from the literature.

• biweight 5

• andrewsinewave 1.339

• welsch 2.11

• huber 1.5

• huber_psi 1.28

• hampel (1.7, 3.4, 8.5)

• hampelfilt 3

• ramsay 0.3

• tau: 4.5

The hampel has a 3-part descending function, known also as (a,b,c). Its tuning constant cval must be given as a
tuple of 3 values. Typical values are (1.7, 3.4, 8.5) called “17A”; and (2.5, 4.5, 9.5) called “25A”. With values given
as multiples of the median absolute deviation, the 25A can be stated equivalently: a’ = 1.686, b’ = 3.035 c’ = 6.408 as
multiples of the standard deviation.

3.2 Trimmed methods

There are 3 methods which first focus on outlier treatment, followed by taking the mean in a second stage:
trim_mean, winsorize and hampelfilt.

• The hampelfilt was already discussed in the previous section because its threshold is defined as cval times
the median absolute deviation, beyond which it replaces values with the median.

• The trim_mean deletes the fraction proportiontocut from both sides of the distribution.

• The winsorize replaces the fraction proportiontocut from both sides of the distribution with the re-
maining values at the edges.

8 Chapter 3. Usage examples
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Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='trim_mean',
window_length=0.5, # The length of the filter window in units of ``time``
edge_cutoff=0.5, # length (in units of time) to be cut off each edge.
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
proportiontocut=0.1 # Cut 10% off both ends
)

3.3 median, mean

These methods ignore the parameters proportiontocut and cval

Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='median',
window_length=0.5, # The length of the filter window in units of ``time``
edge_cutoff=0.5, # length (in units of time) to be cut off each edge.
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.4 medfilt

This method is cadence-based. Included to compare to the time-windowed median. The parameter
window_length is now in units of cadence (i.e., array data points). It ignores the parameters edge_cutoff
and break_tolerance.

Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='medfilt',
window_length=31 , # The length of the filter window in cadences
return_trend=True, # Return trend and flattened light curve
)

3.5 Spline: robust rspline

Spline with iterative sigma-clipping. It does not provide edge_cutoff, but benefits greatly from using a sensible
break_tolerance. Example usage:

3.3. median, mean 9
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flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='rspline',
window_length=0.5, # The knot distance in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.6 Spline: robust hspline

Spline with robust Huber-estimator (linear and quadratic loss). It does not provide edge_cutoff, but benefits
greatly from using a sensible break_tolerance. Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='hspline',
window_length=0.5, # The knot distance in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.7 Spline: robust penalized pspline

Major update with version 1.6.

Robust spline through iterative sigma-clipping. The iterations (as printed during the runtime) make the spline fit robust
against outliers. In each iteration, data points more than PSPLINES_STDEV_CUT=2 standard deviations away from
the fit are removed. Remaining data are fit again. The iteration cycle stops when zero outliers remain, or (at the latest)
after PSPLINES_MAXITER=10 iterations are completed.

In each iteration, PyGAM is used to determine the optimal number of splines (with equidistantly spaced knots). It tests
n=[1,..max_splines] knots. In each test, the sum of the squared residuals is noted. Afterwards, a “penalty
calculation” is performed. More knots make a smoother fit, i.e. smaller residuals. But more knots are “bad” due to the
risk of overfitting. Both measures are weighted against each other, i.e. the number of knots is penalized. Per default,
the L2 norm (ridge smoothing) is used.

The edge_cutoff functionality is provided. The penalized spline method benefits greatly from using a sensible
break_tolerance. Example usage:

flatten_lc, trend_lc, nsplines = flatten(
time, # Array of time values
flux, # Array of flux values
method='pspline',
max_splines=100, # The maximum number of knots to be tested
edge_cutoff=0.5, # Remove edges
stdev_cut=2 # Larger outliers are removed in each iteration
return_trend=True, # Return trend and flattened light curve
return_nsplines=True, # Return chosen number of knots
verbose=False # If true, prints status during runtime
)
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which returns the usual flattened light curve and the actual trend. In addition, when choosing
return_nsplines=True, the chosen spline value (number of knots) is returned. This is done separately for
each segment, in case break_tolerance>0 resulted in segmentation. Check this with:

print('lightcurve was split into', len(nsplines), 'segments')
print('chosen number of splines', nsplines)

which returns something like:

lightcurve was split into 2 segments
nsplines [19. 26.]

To determine the distance between the knots in each segment, you can run

from wotan.gaps import get_gaps_indexes
segs = get_gaps_indexes(time, break_tolerance=break_tolerance)
segs[-1] -= 2 # remove endpoint padding
durations = []
for seg in range(len(segs)-1):

start = time[segs[seg]]
stop = time[segs[seg+1]-1]
duration = stop - start
durations.append(duration)
print(start, stop, duration)

print('Segment durations', durations)
print('Time between knots', durations / nsplines)

which prints something like:

Segment durations [7.54, 12.25, 12.14, 12.33]
Time between knots [0.25 0.27 0.21 0.16]

3.8 Lowess / Loess

Locally weighted scatterplot smoothing (Cleveland 1979). Offers segmentation (break_tolerance), but no
edge clipping (edge_cutoff). For similar results compared to other spline-based methods or sliders, use a
window_length about twice as long. Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='lowess',
window_length=1, # The length of the filter window in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.9 CoFiAM

Cosine Filtering with Autocorrelation Minimization. Does not provide edge_cutoff, but benefits greatly from
using a sensible break_tolerance. Example usage:

3.8. Lowess / Loess 11
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flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='cofiam',
window_length=0.5, # Protected window span in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.10 Fitting of sines and cosines

Fits a sum of sines and cosines, where the highest order is determined by the protected window span
window_length in units of time. A robustification (iterative sigma-clipping of 2-sigma outliers until conver-
gence) is available by setting the parameter robust=True. Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='cosine',
robust='True', # iterative sigma-clipping of 2-sigma outliers until

→˓convergence
window_length=0.5, # Protected window span in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.11 SuperSmoother

Friedman’s (1984) Super-Smoother, a local linear regression with adaptive bandwidth. Does not provide
edge_cutoff, but benefits greatly from using a sensible break_tolerance. Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='supersmoother',
window_length=0.5, # The knot distance in units of ``time``
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
cval=None # Bass enhancement (smoothness)
)

Note: cval determines the bass enhancement (smoothness) and can be None or in the range 0 < cval < 10. Smaller
values make the trend more flexible to fit out small variations.

3.12 Savitzky-Golay savgol

Sliding segments are fit with polynomials (Savitzky & Golay 1964). This filter is cadence-based (not time-windowed),
so that window_length must be an integer value. If an even integer is provided, it is made uneven (a requirement)

12 Chapter 3. Usage examples
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by adding 1. The polyorder is set by cval (default: 2 - the best value from our experiments). Does not provide
edge_cutoff, but benefits from using a sensible break_tolerance.

Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='savgol',
cval=2, # Defines polyorder
window_length=51, # The window length in cadences
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

3.13 Gaussian Processes

Available kernels are :

• squared_exp Squared-exponential kernel, with option for iterative sigma-clipping

• matern Matern 3/2 kernel, with option for iterative sigma-clipping

• periodic Periodic kernel informed by a user-specified period

• periodic_auto Periodic kernel informed by a Lomb-Scargle periodogram pre-search

GPs do not provide edge_cutoff, but benefit from using a sensible break_tolerance.

Example usage:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='gp',
kernel='squared_exp', # GP kernel choice
kernel_size=10, # GP kernel length
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

Note: The sensible kernel_size varies between kernels.

A robustification (iterative sigma-clipping of 2-sigma outliers until convergence) is available by setting the parameter
robust=True:

flatten_lc, trend_lc = flatten(
time, # Array of time values
flux, # Array of flux values
method='gp',
kernel='squared_exp', # GP kernel choice
kernel_size=10, # GP kernel length
break_tolerance=0.5, # Split into segments at breaks longer than that
robust=True, # Robustification using iterative sigma clipping
return_trend=True, # Return trend and flattened light curve
)

3.13. Gaussian Processes 13
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Here we can simply swap kernel='squared_exp' for kernel='matern' and play with kernel_size to
get a very similar result.

In the presence of strong periodicity, we can also use the periodic kernel. This version does not support robustification.
If we know the period, we can do this.

flatten_lc2, trend_lc2 = flatten(
time, # Array of time values
flux, # Array of flux values
method='gp',
kernel='periodic', # GP kernel choice
kernel_period=2*3.14, # GP kernel period
kernel_size=10, # GP kernel length
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

Usually, however, it is better to let wotan detect the period. We can do this by setting kernel='periodic_auto'.
Then, a Lomb-Scargle periodogram is calculated, and the strongest peak is used as the period. In addition, a Matern
kernel is added to consume the remaining non-periodic variation. This version does not support robustification. Ex-
ample:

flatten_lc2, trend_lc2 = flatten(
time, # Array of time values
flux, # Array of flux values
method='gp',
kernel='periodic_auto', # GP kernel choice
kernel_size=10, # GP kernel length
break_tolerance=0.5, # Split into segments at breaks longer than that
return_trend=True, # Return trend and flattened light curve
)

14 Chapter 3. Usage examples
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